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Abstract

The mathematical models of many

dynamic systems of interest in the aerospace
industry are inherently complex and of high
order. Rather than grapple with the full-
complexity models for such systems, the control
designers often elect to derive low-order, reduced-
complexity models for which a control system
can be designed. The subject of model-order
reduction has received a significant amount of
attention in control engineering literature. This
paper describes and demonstrates a novel active-
control methodology that can be used to design a
control system that automatically forces the
original system to behave like a chosen reduced-
complexity model by treating the effects of the
original complexity-related terms as disturbances
acting on the reduced-complexity system. The
method is demonstrated by several worked

examples involving both linear and nonlinear
systems, supported by simulation results.

Inlxgduction

The difficulty in developing high-order
models for complex systems in the aerospace

industry has been facilitated by the emergence of
high-speed digital computers and automated
modeling software. The realistic behavior of
even extremely complicated systems can now be
effectively modeled using finite element analyses
and/or complex system simulations embodying
relevant characteristics such as nonlinearities,

coupling, time-varying parameters, large
numbers of inputs and outputs, time delays, and

input-derivative terms. Most models of complex
systems are inherently high-order, even when the
other complexities identified above are eliminated
via linearization, estimation, or prudent

disregarding of the offending terms.
Consequently, the control system designer must
often cope with unwieldy, high-order models
which lead to the design of inordinately high-
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order control systems. Although, in theory, the
controller developed provides the desired
performance, implementation of the full-order
controller is sometimes not practical.

In recent years, a considerable amount of
research effort has been directed towards the

problem of developing reliable order-reduction
techniques for both mathematical system models
and their associated controllers. Reduction in

model order generally leads to a simpler, lower-
order controller design, thereby increasing the

feasibility and practicality of implementation and
potentially reducing cost. The subsequent
reduction in the degrees-of-freedom associated
with the reduced-order model aids in the designer's

visualization and understanding of the system and
may lead to further insight into a control system
design. Typically, the complexity of a model is
reduced by first eliminating or simplifying
nonlinearities, coupling effects, time-varying

parameters, and other complicating factors. The
model is then further simplified by reducing the
order of the less complex model via frequency
domain or state-space techniques. Control
systems designed in this manner can provide
acceptable performance in principle. However, in
some instances the controller may require further

tuning to improve performance, or may
necessitate the addition of filters to eliminate the

effects of unmodeled dynamic modes that interact
with the control system in an undesirable
fashion.

The technique presented and illustrated
in this paper constitutes a new and innovative

way to achieve effective reduction of model-
complexity by active control. The examples
presented are simple engineering examples,
however they demonstrate the potential for
application of this method to more complicated

systems. The traditional approach of first
reducing the model-complexity and then
designing the control system provides no
mechanism whereby the credibility of the



reduced-complexitymodel(RCM)isguaranteed.
Theterm"reduced-complexity"isusedinplaceof
"reduced-order"becausetheModelComplexity
ReductionbyActiveControl(MCRAC)method
producesacontrollerthatisinherentlycapableof
eliminatingorminimizingtheundesirableeffects
of phenomenasuchascouplingandnonlinear
terms,as will bedemonstratedvia example
problems. The methodlinks the model-
complexityreductionwiththecontrollerdesign
methodsuchthatuponimplementationof the
controller,thecredibilityoftheassumedRCMis
automaticallyenforcedbythecontrolleractions,
therebyachievinganewlevelofeffectivenessin
applyingtheclassicallinearizationtechniques.

The proposed method employs
"disturbanceobserver"theorytogeneratereal-
timeestimatesof thetime-domaineffectsof the
unwantedterms associatedwith model
complexity.Thetotalcontroleffortisdividedin
sucha waythatpartof thecontrolleraction
annihilates,orminimizes,thedisturbingeffects
of the model-complexitytermson the time
responseof thesystem.Theotherpartof the
controleffortprovidesthedesiredclosed-loop
systemperformance.The controlsystem
designeris thusfreetotailorthedesiredRCM
anddevelopa controlstrategysuchthatthe
closed-loopRCMmeetsthedesiredperformance
goalsandrejectsdisturbancesactingon the
system.Thefollowingsectionspresentdetails
of themethodfollowedby threeillustrative
examples.Includedin theSummary and

t_Qnclusions section are plans to extend the

method to more complicated problems.

Model Complexity Reduction

Model complexity reduction is more

generally referred to as model order reduction and
is considered to be the reduction of the dynamic

order of the model. Given a system of order n,
the goal of the model order reduction process is
to derive a model of order k, where k<n, such

that for a given input, the reduced-order model

output(s) closely tracks that of the full order
system model. An error norm is examined to
determine the accuracy of the reduced-order model.

A plethora of methods exists by which this may
be accomplished using time- and frequency-
domain techniques as indicated in the extensive
bibliographies in References 1 and 2. Indeed this
area of model simplification has garnered the
majority of the attention of researchers in this
area. Techniques including balanced realization,
component mode synthesis, aggregation
methods, perturbation methods, and continued

fraction methods have been developed to

accomplish the task.

Less frequently addressed are other

aspects of model complexity reduction. These
include approximation procedures for dealing
with nonlinearities, time-varying parameters,
coupling, and the number of system inputs.
System nonlinearities are typically addressed by
conventional linearization about a nominal

operating point (or points) or a nominal
trajectory. Functional linearizations such as
describing functions may also be employed.
Time-varying parameters are typically eliminated
by using averaging methods or frozen-time
eigenvalue methods. Coupling effects are
sometimes ignored based on the assumption that
they manifest fast transients. Coupling is also
eliminated from high-order models using
transformations to alternate coordinate systems,
such as modal coordinates. The transformation
masks the existence of coupling and the
transformed model is then more easily reduced for

controller design. For systems with a "large"
number of inputs, often the number of inputs is
reduced for simplification of the design via a
fixed coordination of multiple control inputs or
by ignoring certain disturbance inputs. Multiple-
input multiple-output techniques are currently
enjoying a much wider application to this

modeling aspect.

The MCRAC design philosophy is that
a linear controller for the original full-complexity
system model, M, can be designed using a
judiciously chosen reduced complexity model, m,
such that the resulting controller, u(m), provides
performance which meets a given set of closed-
loop specifications when implemented with the
original system model, M. Furthermore, the
action of u(m) enforces the RCM selected and
guarantees the desired performance of M. The
reduced complexity model is of lower order than
the original and is linear. The resulting control
design is, in general, of lower order than one

designed using the original model.

Assume that M has the standard state

space form given in equation (1) below, where
the matrix A may be time-varying, nonlinear,

highly coupled, or embody other complexities.

= F(x,t,u,w)
= Ax + Bu + Fw + h.o.t.'s

y=Cx

(1)
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In the equation above, x is the state variable, u is
the control variable, w is an external disturbance,
y is the output, and "h.o.t.'s" stands for higher
order terms which arise from classical

linearization. A reduced complexity model may
be developed from (I) in the following manner.

A linear RCM system matrix A r and the state

vector )_r are selected by the designer to embody

the primary dynamics to be controlled. If xs is
defined as the state vector which embodies the

secondary dynamics, then the full system model
can be written as given in equation (2) which, for
now, ignores the h.o.t.'s derived from
linearization.

=rA, +Bu<m)+Fw
(2)

y = Crx,

The reduced complexity model is now given by

:_r = Arxr + Arsxs + Bru(m) +Fw

y = Crxr
(3)

with the dynamics of xs determined by equation
(4) below.

Xs = A,,x, + A,x, (4)

Before explaining how the effects of the
secondary dynamics are handled in the design, the
structure of the controller u(m), given in equation
(5) below, is examined.

u(m) = Up(m) + ud(m) +u_(m) (5)

where

Up(m) = control providing desired response

ud(m) - control for external disturbances
u_(m) - control for system complexities.

Note that the total control effort u(m) is divided

into three parts, the primary part up(m) that
provides the desired closed-loop system response,
the disturbance accommodation part, ud(m ) that
is designed to cancel or minimize external

disturbances, and the RCM part uc(m) that is

designed to cancel or minimize the effects of the
unmodeled modes, nonlinearities (or h.o.t.'s
resulting form linearization), and other
complexities on the behavior of the reduced-

complexity system. Those effects are viewed as
time-varying disturbances, and thus uc(m) can be

designed using Disturbance Accommodating

Control (DAC) methods.J3] Consider the
external disturbance term and recall that for
cancellation

-B_ud(m) = Fw. (6)

The disturbance w is modeled in state-space form
as

= Dz + cr (7)
w=Hz.

In equation (7), z is the state of the disturbance w

and D is the system matrix governing the
dynamics of z. The matrix D is developed
directly from the time-domain or differential
equations defining the waveform structure of w.
The cr are Dirac impulses which arrive at random
intervals with random intensities. The derivation

of the matrix D is explained thoroughly in the
reference. From equation (6), disturbance
cancellation occurs when

Ud(m)= -B;_FHz (8)

which requires that

rank[Bl = rank[BlFH-l. (9)

If the disturbance dynamics described in equation
(4) manifest a waveform structure, which is
typically the case for physical systems, then

uc(m) can be designed using the same principles
as described above for the external disturbances.

A disturbance state model is developed based on

the waveform structure of x s leading to the
development of a state disturbance model as in
equation (10).

:zs = Dsz_ + Cr

X, = Hz, (10)

Therefore, for cancellation,

u_(m) = -B'_ A_Hz, (11)

with the rank condition as indicated in equation
(9) satisfied. When full cancellation occurs, the

dynamic order of the system is reduced. The
control uc(m) must eliminate the effects of the

coupling term, or nonlinear terms (demonstrated

in the third example in the following section),
without destabilizing the system.

The total congol action u(m) can be divided into
additional parts, as required, to control any other
disturbances that may act on the plant. The



up(m)partofthecontrollerisdesignedusingthe
engineer'smethodof choicesolongasthe
controllermeetstheperformancerequirements.
Acompositeobserverisdesignedusingstandard
observertheoryto estimatethesystemstates
requiredforcontrollerimplementationaswellas
theeffectsof theunmodeleddynamicsand
disturbances.Theobserverordergenerally
determinestheorderof thecontroller,therefore,
caremustbetakenwhenselectingthedisturbance
modelforthefull-ordermodelcomplexities.The
choiceofthedisturbancemodelwillbediscussed
in thefollowingsection.Theoutputsof the
observerareusedwith theappropriategains,
calculatedusingtheRCM,to implementu(m).
Themethodwill bedemonstratedandelaborated
uponusingthreesimpleexamplesin the
followingsection.

Illustrative Examoles

Three design examples are presented here
to demonstrate the concept of the MCRAC
method for controller design. It is emphasized
that the results shown here are preliminary, but

show a high degree of promise for the method.
All examples are single-input, single-output
systems with the assumption of co-location of
the sensor and actuator. It is further assumed that

the complexities removed from the full-order
model may be modeled as an input disturbance.
The first example comprises an eight-order

spring-mass system. The second example is a
highly-coupled sixth order system which
simulates a flexible beam. The third example is

a nonlinear second-order system.

Shown in Figure 1 is a diagram
representing an eighth-order dynamic spring-mass
system, which is the focus of the first example.
The values of the masses and spring constants
used in this example are given below the diagram
in Table 1. The control objective is to move m 1

to a given set point position and hold it there,
regardless of the motion of the other three
masses. Note that

Figure 1. Spring-mass system for Example 1.

ml = 10 kl = 5

m2 = 5 k2 = 10

m_ = 2.5 k_ = 5

m4 = 5 k4 = 2.5

Table 1. Parameter values used in Example 1.

there is no damping in the system so that the
masses m2, m3, and m4 will continually

oscillate. It is assumed that the position of m 1
can be sensed and that the control action is

applied at ml. The equations of motion were

derived and are given below in equations (12).

_'1=-kl 2. Yl + _-1 + ml

+
Y3 = k3 Y2 -(k3:: 4'} Y3 + mk-_43Y4m3

)'4= m_Y3 k4"_4-4 y4 (12)

The eight-order model was cast in state space
form for complexity reduction and control design.
Because the goal of the closed-loop controller is
to move m 1 to a particular position and hold it
there regardless of the motion of the other
masses, the reduced-complexity second order

RCM, m, given in equations (13) below was
selected. In this equation, Yr represents the

variable Yl, therefore, the primary states for the

system are those associated with Yl- The
motion of the other masses and the resulting

forces imparted on m l are secondary and are

modeled as a disturbance input Ws, which equates
to xs in equation (10).

Yr + kl + k2y, = -2--u(m) + k2w s
ml ml ml

(13)

The control input u(m) is divided as in equation
(5) except that there is no ud(m) term as no
external disturbances are considered. The primary

control up(m) is designed such that the closed-
loop response of m manifests the integral time
absolute error (i.t.a.e.) response characteristics.
The ideal design model is given in equation (14)
below.

Ym + 1.4moy_ + co_ym=Ysp 04)
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To design up(m), the standard set point error
dynamics are examined for the ideal model and
the RCM. When the error dynamics are equated,

the gains for up(m) are generated. The resulting
controller providing i.t.a.e, response
characteristics for the RCM is given below (for
the parameter values given in Table 1).

up(m) = 10(O32o-l.5)(ysp-yl) - 1403oy: + 15y,p
(15)

For 030=10,

up(m) = 1000y,p - 985yl - 140y1. (16)

The character of the disturbance acting

on m 1 is of waveform structure because of the
sinusoidal motions exhibited by spring-mass

systems. Therefore, the principles discussed in
the previous section may be applied to develop
the model of the disturbance for incorporation
into the observer design. The motion of the

system is sinusoidal, and certainly the
disturbance may be modeled as a linear
combination of sinusoidal functions of proper

frequency. However, to be more general and to
allow for unforeseen parameter variations, the
spline disturbance model given in equation (17)
is selected. The variable t is time and the ci's are

arbitrary constants.

w, = Cl t2 + c2t + c 3 (17)

The resulting "disturbance" state model is given
in (18) where D s and H are defined shortly.

w, = I-Iz, (18)

For cancellation of the effects of the model

complexities, the rank condition given in
equation (11) must be satisfied, which is the case
for this example. Therefore, the expression for
uc(m ) is derived immediately in equation (19).

u,(m) = -B_IA,=Hz.

foo]Zs

u°(m)=-( 0 ml _ 0
ml

= -k2zl

(19)

An observer is designed using the

composite dynamics involving m and the
disturbance model for controller implementation.

The composite dynamics state model is given in
equations (20).

(_)=[ Ar0 A"H]_x:/+IB:]UD.J:Z.' +(0)

%

y= Cx (20)

where

mr -_.

0 1

kl +k2 0
J

ml

Ar. :rooo]io,il
k2 0 0 D'=00mt , 00

c =[10000]

The observer design equation is given in (21),
where koi are the observer poles, placed for this

design at LoW -20, and K o are the observer

gains to be calculated.

+ o (21)

The design procedure for such observers is
detailed in the DAC reference cited above. The

resulting estimator, and thus controller, is 5th
order. The numerical values of the gains for the
state and disturbance estimates, indicated by the
carets, for the closed-loop system are given in

equation (22). Note that the disturbance
deriv_ves are not required in the controller.

A A

u(m) = 1000y,p-985x: - 140x2- 10z: (22)

The plot in Figure 2 is a plot of the
response of the full-order system model when
controlled by u(m) as designed above. In the

figure, the system output is the solid line, the set
point is the dashed line, and the estimate of the
output is another dashed line which tracks the
true output exactly. Figure 3 is a plot of the
disturbance (solid line), its estimate (tracks

exactly the disturbance signal), and the control
signal (dashed line). The control signal has been
scaled in the plot to that it is evident that the
controller is tracking the disturbance dynamics,
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caused by the oscillations of the masses m2,

m 3, and m4 and providing a signal which
eliminates the effects of these oscillations on the

position of ml. To test the robustness of the

design to full-order model parameter variations, a
series of simulations was executed while varying

the mi's and ki's for the system. The plot in

Figure 4 shows that the system continues to
track the set point input even with the system
matrix parameters varied by 100%. No change to
the control gains or the observer were made to
achieve this resulL
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Figure 2.
controller.
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Figure 3. Control Signal and Disturbance.

The second example, diagramed in

Figure 5, focused on a simple model of a
vertically suspended flexible beam. For
simplicity, the beam is modeled as three rigid
beams with torsional springs at the joints.
Small angles are assumed in deriving the
equations of motion for the sixth order system.
The controller goal is to maintain 03 at zero

degrees regardless of the motion of the other two
rigid members. The system is highly coupled.
The equations of motion for the system were
derived using the Lagrange method and are
presented in equations (23), with the definition of

terms as indicated in figure 5 and the ri equal to

the midpoint of each beam as measured from each
joint.

Example I S)'_em P_tme_a-s v_.i_l IV 100'It

l i tl .,_ .............

li
...... ,_, ,....i ........ ti-
....................i.........:-il...........
........... : ........... i ......... _ 1.

5 I0 15 20

Figure 4. Response with full-order model
parameters varied by 100%.

m

k_.,_ll_-- m _,

2' 12 02

0 3 m s I

Figure 5. Rigid link "beam" model.

el(Ii+m_+(m2+m3)l_ + e2(m211r2+m31x12)

+ _jns12r3 + (mlgrl+m2gll+m3gl0ex

+ KlOl +K2OI - K202 = 0

e2(I2+m2r2+m3122) + _l(m211r2+m31112)

+ e3m312r3+ (m2gr2+m2gll+m3gl2)O2

+ K2e2 - K20_ + K302 - I(303 = 0

_3(I3+m3r 2) + Olm311r3

+ e2m3]2r3 + m2gr303

-K302 + K303 = 0 (23)

After obtaining a general expression for the
mass and stiffness matrix, numerical values were
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substituted and the full-order state space model M
derived. For the results shown below, mi=12,

Ii=l, ki=10, and the length of each beam was set

to 1. The RCM selected for this example was a
simple second-order system involving the states
for 03. The model took the same form as that for

Example 1. The same disturbance model was
selected and the observer designed in a similar
fashion to that in the previous example. The
controller u(m), designed using m, was then
implemented with the full-order model. In the
simulation, the controller is activated at t=2

seconds. The plot shown in Figure 6 is the 03
closed-loop response and the estimate, which

tracks exactly. Figure 7 is a pitt of the motion
of 01 and 02.

1

0.5

!0
_-0,5

o

-1

Exatuple2 Theta3 andEatimm

-1.5
0 6 10

Figure 6. Closed-loop response for Example 2.
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Motion of Ol(solid line) and 02

(dashed line).

Shown in Figure 8 is the control signal.
Note that the controller produces a signal which
cancels the effect of the motion of the upper two
beam elements on tile third. The controller is

designed to accommodate all coupling effects and
higher order terms as described in the previous

section. These are estimated and eliminated

through the MCRAC action.

I00
Example2 Courol Signal

i

50 L.........

-50

-100
o 2 6

time

10

Figure 8. Control signal for Example 2.

The third and f'mal example involves the
nonlinear second-order system given in equation
(12).

+ (1 + y2)sin o)y = 0 (12)

The nonlinearity is the product of a sine function
and the square of the derivative of the output y.
The RCM chosen for this example was a simple
double-integrator. An i.t.a.e, controller was
designed for the RCM. The disturbance model
selected to eliminate the effects of the nonlinear

term is again a second-order spline implying a
third-order disturbance model. The resulting
controller is fifth order. The curves plotted in
Figure 9 below indicate the system closed-loop
response with u(m) in the loop with the full-
complexity model. The initial conditions on the

systemare(y,y)= (l,0), the extremes on 0_ are

-100 _<co < 100, and selected curves are plotted.
The controller action is initiated at t=2 seconds.

Similar results are obtained for varying the initial
conditions on y and its derivative.

A controller was designed using a
linearized plant model for equation (12) and a
similar set of simulation runs executed. The

domain in which the controller, designed using

the linearized model, produced acceptable results
was -5 < co _<5.484. The controller designed
using MCRAC ideas provides a substantially

improved operating range over parameter
variations.

7



jjl

2_

1.5

I

:., 0.5

0

-0.5

-1

Example3 Vari_om or Omega

...... _t. _..

X
• M

0 2 4 6 8

_me

Figure 9. Closed-loop response of nonlinear
plant as co is varied from -100 to 100.
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2. Enns, D., "Model Reduction for Control
System Design", Doctoral Thesis, Stanford
University, June, 1984.

3. Johnson, C. D.,"Theory of Disturbance
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New York, 1976.

Summary and Conclusions

The Model Complexity-Reduction by
Active Control methodology has been introduced
in this paper. The method shows potential for
application to systems in which the assumptions
described in the previous examples hold. That is,
single-input, single-output systems with a co-
located sensor and actuator pair. It is also
assumed that the complexities removed from the
full-order model may be modeled as an input
disturbance. The controllers derived are of lower
order than those derived using the full-complexity

models for the two dynamic system examples and
much higher order for the nonlinear system.
However, the improvement in performance of the
higher order controller over the second order
controller designed using the linearized model for
example 3 is significant. In all example cases,
parameter variations of significant magnitude
may be imparted on the full-order system matrix
with virtually no effect on system performance.

Future research will be directed toward

further development of the theory and to the
application of MCRAC principles to more
complex systems for which the assumptions
listed above do not necessarily hold. Based on
the results presented in this paper, the method
holds promise for application to the class of
problems discussed.
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